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Abstract—This research employs a branch and bound 

algorithm to systematically generate star groupings that align with 

perceptual and geometric principles associated with constellation 

recognition. The algorithm evaluates subsets of stars based on five 

key visual heuristics. First, magnitude influences selection 

priority—brighter stars (lower magnitude values) are favored as 

anchor points due to their visual prominence. Proximity is 

measured as the angular distance between stars, with closer 

groupings considered more perceptually coherent. Convexity is 

assessed by the internal angles formed by star triplets, with 

smoother, near-180° configurations prioritized for visual 

harmony. To ensure perceptual balance, the algorithm also 

promotes even spacing, penalizing star chains with large variance 

in angular separation. Finally, good continuation is modeled by 

rewarding paths with consistent directional flow and minimal 

angular deviation. The branch and bound approach enables 

efficient pruning of suboptimal star combinations early in the 

search process, significantly reducing computational complexity 

while maintaining alignment with visual grouping principles. This 

method not only optimizes for visual clarity but also mimics 

human cognitive biases in constellation perception. 
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I. INTRODUCTION 

In our daily lives, we are often confronted with an 

abundance of choices. Beneath each decision lies an underlying 

effort to identify the most favorable outcome, which is a process 

known as optimization. This principle is central to numerous 

computational algorithms, enabling solutions to complex 

problems across various domains. One particularly powerful 

technique in this context is the Branch and Bound algorithm, 

which systematically explores the solution space by breaking a 

large problem into smaller sub-problems and eliminating those 

that cannot yield better solutions than the current best. 

To illustrate the potential of this method, imagine looking 

up at the night sky, a vast expanse dotted with countless stars. 

From this seemingly infinite canvas, how might one design a 

new constellation that is not only aesthetically pleasing but also 

adheres to specific criteria, such as visual recognizability or 

scientific relevance? This paper explores the use of Branch and 

Bound to identify an optimal subset of stars from a large dataset, 

aiming to construct a constellation that maximizes a set of 

defined metrics while satisfying constraints such as a limit on 

the number of stars or the total angular area covered. 

Through this lens, this paper examines a classical 

optimization technique can be applied to a novel and 

imaginative problem, bridging computation and celestial design 

in a unique and meaningful way. 

II. BRANCH AND BOUND 

Branch and Bound (B&B) is a widely used algorithmic 

framework for solving combinatorial and discrete optimization 

problems where the solution space is too large to explore 

exhaustively. The method is particularly effective for problems 

such as integer programming, the traveling salesman problem 

(TSP), and constrained subset selection, where optimality is 

required but brute-force approaches are computationally 

infeasible. The B&B approach systematically explores the 

solution space by dividing it into smaller subproblems 

(branching) and eliminating regions that cannot contain the 

optimal solution based on bound estimates (bounding) [1]. 

The search process in B&B is typically visualized as a tree, 

where each node represents a partial or complete solution. The 

method ensures correctness and optimality by expanding only 

promising branches while pruning others early, thereby 

dramatically reducing the number of nodes that must be 

evaluated. This selective exploration makes the algorithm more 

efficient than exhaustive search, especially when paired with 

effective bounding techniques. 

Figure 1. Example of Branch and Bound Tree on Traveling 

Salesman Problem [2] 
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A. Least Cost Search 

Least Cost (LC) Search is a node-selection strategy often used 

within the Branch and Bound framework. In LC search, nodes 

in the search tree are explored in the order of their estimated 

cost, specifically, the node with the lowest cost is expanded 

first. This cost is determined using a bounding function, which 

must be admissible (i.e., never overestimating the true cost to a 

solution) to guarantee optimality [3]. 

The general steps for LC Branch and Bound are as follows: 

1. Initialization: Place the root node representing the 

initial solution in a priority queue. 

2. Node Expansion: At each iteration, remove the node 

with the lowest cost estimate from the queue. 

3. Bounding: If the cost of the node exceeds the current 

best-known solution, discard it. 

4. Branching: Generate child nodes by extending the 

current partial solution. 

5. Solution Update: If a complete solution is found with 

a lower cost, update the best-known solution. 

6. Repeat until the queue is empty or the optimal solution 

is confirmed. 

This strategy is efficient for problems where the bounding 

function closely approximates the real cost, enabling aggressive 

pruning and rapid convergence to optimality [4]. 

B.  Branching and Bounding 

The two fundamental components of the B&B algorithm are 

branching and bounding. Branching refers to the recursive 

division of the original problem into smaller subproblems by 

making a decision at each node, such as including or excluding 

an element. This step expands the search tree and systematically 

explores the solution space. 

Bounding involves estimating the minimum (or maximum, 

depending on the problem) cost that can be achieved from a 

given node. If this bound is worse than the cost of an existing 

complete solution, the node and all of its descendants can be 

discarded—a process known as pruning. Formally, if the bound 

𝑓(𝑛) of a node 𝑛 satisfies 𝑓(𝑛) ≥ 𝑓∗, where 𝑓∗  is the cost of 

the best known feasible solution, then node 𝑛 is pruned [5]. 

In the context of optimization and search algorithms, the 

cost function 𝑐(𝑖) is a key component used to evaluate and 

prioritize nodes (or partial solutions) during exploration. The 

formula: 

𝑐(𝑖) = 𝑓(𝑖) + 𝑔(𝑖) (1) 

decomposes the total estimated cost 𝑐(𝑖) of a solution path 

passing through node iii into two parts: 1) 𝑓(𝑖) which is the 

actual cost incurred from the root node to the current node 𝑖 and 

this represents the known or accumulated cost of reaching the 

current state in the search tree, 2) 𝑔(𝑖) which is the estimated 

cost to complete the remaining portion of the solution from 

node 𝑖 to a terminal (goal) state [2]. This component is often 

derived from a heuristic or bounding function that provides a 

lower-bound estimate of the cost needed to finish the partial 

solution. 

Together, 𝑐(𝑖) represents the estimated total cost of a 

solution path that passes through node 𝑖. In a Branch and Bound 

algorithm using Least Cost (LC) Search, nodes are typically 

selected for expansion in order of increasing 𝑐(𝑖) prioritizing 

those with the smallest expected total cost. This decomposition 

is especially important in admissible heuristics where 𝑔(𝑖) must 

never overestimate the true remaining cost in order to guarantee 

that the first complete solution found is optimal.  

In Branch and Bound, 𝑓(𝑖) is often the exact cost of partial 

solutions (e.g., the sum of selected values, distances, or 

weights), and 𝑔(𝑖) may come from a problem-specific 

relaxation or approximation that underestimates the remaining 

cost. By combining these, the algorithm can balance 

exploration and exploitation effectively. 

The effectiveness of the Branch and Bound algorithm 

hinges on the tightness of the bounding function and the 

branching strategy. A well-designed bounding function 

significantly reduces the size of the search tree, making the 

approach scalable for larger problems. Because of its general 

applicability and theoretical guarantees, Branch and Bound 

continues to serve as a foundational tool in optimization 

research and practice [6]. 

III. THE  STARS AND CONSTELLATIONS 

Stars have captivated human curiosity for millennia, serving 

not only as sources of light in the night sky but also as 

fundamental objects of scientific study. Each star can be 

described by its celestial coordinates which define its position 

on the celestial sphere, along with its properties. Over time, 

cultures around the world have grouped stars into 

constellations, recognizable patterns that often reflect 

mythological figures, animals, or objects. Beyond their cultural 

significance, constellations also serve practical purposes in 

navigation, astronomy, and astrophysics, offering a structured 

way to segment and reference regions of the sky. In modern 

times, computational methods enable the design and analysis of 

new constellations based on scientific criteria, such as 

geometric coherence, visibility, and spatial distribution. 

A. The Star Characteristics 

In astronomy, stars are luminous celestial objects that 

populate the night sky. For computational and observational 

purposes, each star is typically characterized by a set of 

standard properties. The most common of these include Right 

Ascension (RA), Declination (Dec), and Apparent Magnitude 

(Mag) [7][8]. 

Right Ascension (RA) is analogous to longitude on Earth 

and measures a star’s position along the celestial equator. It is 

usually expressed in hours, minutes, and seconds, with 24 hours 

corresponding to a full 360° rotation. Declination (Dec) 

corresponds to latitude, measuring a star’s angular distance 

north or south of the celestial equator, expressed in degrees. 

Apparent Magnitude represents the brightness of a star as seen 

from Earth. A lower magnitude indicates a brighter star. This 

value is essential in visual filtering, as more prominent stars are 

often more noticeable and thus preferable for constellation 

design. 

B. Distances Between Stars 

To evaluate the spatial separation between two stars on the 

celestial sphere, the concept of angular distance is essential. It 

measures how far apart two stars appear from an observer's 

point of view on Earth, which is critical for constellation design. 

One effective and numerically stable method to compute small 

range of distances is the Haversine formula, widely used in 

spherical geometry. 
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Given two stars with coordinates (𝑅𝐴1, 𝐷𝑒𝑐1) and 

(𝑅𝐴2, 𝐷𝑒𝑐2), the Haversine formula calculates the angular 

distance 𝑑 between them as follows [9]: 

𝛥𝑅𝐴 = 𝑅𝐴2 − 𝑅𝐴1 (1) 

𝛥𝐷𝑒𝑐 = 𝐷𝑒𝑐2 − 𝐷𝑒𝑐1 (2) 

𝛼 = 𝑠𝑖𝑛2 (
𝛥𝐷𝑒𝑐

2
) + 𝑐𝑜𝑠(𝐷𝑒𝑐1)  ∙

𝑐𝑜𝑠(𝐷𝑒𝑐2) ∙ 𝑠𝑖𝑛2 (
𝛥𝑅𝐴

2
) 

 

(3) 

𝑑 = 2 ∙ 𝑡𝑎𝑛−12(√𝑎 , √1 − 𝑎) (4) 

 

Here, RA and Dec must be expressed in radians. The result 

𝑑 is also in radians and represents the central angle between the 

two stars as measured from the center of the celestial sphere and 

serves as a fundamental metric for determining the proximity of 

stars. 

This method offers superior accuracy for small angular 

distances compared to the spherical law of cosines, making it 

especially useful in astronomical datasets where stars may be 

closely spaced. In a practical implementation, this can be 

written as a function that takes the coordinates of two stars and 

returns their angular separation. The approach is not only 

computationally efficient but also avoids rounding errors 

common in other trigonometric formulas when dealing with 

very small angles. 

In addition to pairwise distance, it is often necessary to 

evaluate the angle formed between three stars, particularly 

when analyzing the geometric structure of a constellation. 

Given three stars 𝐴, 𝐵, and 𝐶, where 𝐵 is the vertex, and 𝑎, 𝑏, 

and 𝑐 are the angular distances between the corresponding star 

pairs (with 𝑎 being the side opposite to vertex 𝐵), the angle 𝜃 at 

vertex 𝐵 can be computed using the Law of Cosines for 

spherical triangles, as follows [10]: 

𝜃 = arccos (
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
) (5) 

C. The Constellations 

The formation and recognition of constellations are strongly 

influenced by fundamental Gestalt visual principles, which 

describe how the human perceptual system organizes and 

interprets visual stimuli into structured patterns. In particular, 

the principles of proximity, collinearity (or convexity), and 

good continuation have been shown to guide how individual 

stars are mentally grouped into coherent constellations. 

Building on these perceptual foundations, five specific visual 

and geometric factors have been identified as influential in the 

crafting and selection of star constellations: magnitude, 

proximity, convexity, even spacing, and good continuation. 

1. Magnitude, defined as the apparent brightness of a 

star, plays a prominent role, brighter stars (lower 

magnitude values) are more likely to attract attention 

and be included in constellations. 

2. Proximity, which refers to the angular distance 

between stars on the celestial sphere, supports the 

Gestalt principle that spatially closer elements are 

more likely to be perceived as a group. 

3. Convexity is characterized by the internal angle 

formed between three connected stars, where larger 

angles approaching 180𝑜 are preferred, producing 

visually smooth and geometrically stable patterns. 

4. Even spacing among stars, i.e., maintaining consistent 

angular distances within a group, contributes to 

perceptual balance and facilitates faster recognition of 

the constellation as a single object. 

5. Good continuation reflects the human preference for 

smooth, consistent directionality in visual paths; 

constellations where star connections preserve similar 

angles or follow linear trajectories are more likely to 

be perceived as cohesive structures. 

Interestingly, the influence of these visual principles is not 

uniform across all constellation sizes. Studies have shown that 

as the number of stars in a group increases, the influence of 

magnitude diminishes, especially in larger configurations such 

as four-star groups (quads), where geometric properties like 

angle and spacing take precedence in guiding star selection. 

This shift underscores the dominance of spatial structure over 

brightness in complex pattern perception, reinforcing the need 

for multi-criteria optimization in computational constellation 

design. 

Figure 2. The visual principles of each constellation group 

size [7] 

III. PROPOSED METHOD 

This paper proposes a method for crafting optimal 

constellations from a given dataset of stars by implementing 

five key visual principles derived from perceptual psychology: 

magnitude, proximity, convexity, even spacing, and good 

continuation. These principles are quantitatively modeled and 

integrated into a scoring function that evaluates the visual and 

geometric quality of a candidate constellation. To efficiently 

search for the optimal subset of stars under given constraints, 

the Branch and Bound (B&B) algorithm is employed as the core 

optimization framework. 

The structure of the problem closely resembles the classical 

Travelling Salesman Problem (TSP) in that it explores 

combinations of nodes (stars) and evaluates them based on a 

cost (or score) function. As in the TSP’s B&B approach, the 

method considers all possible paths by branching on star 

inclusion or exclusion and uses bounding to prune suboptimal 

branches early, thus avoiding exhaustive enumeration. 

To construct visually plausible constellations from a given 

set of stars, this paper utilizes a Branch and Bound (B&B) 

approach to search the combinatorial space efficiently. The core 

idea is to evaluate subsets of stars based on visual grouping 

principles, while pruning the search tree using upper-bound 
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estimations to avoid unnecessary computation. The selection 

process is framed as an optimization problem, where the goal is 

to find a subset of stars that maximizes a perceptual score under 

two constraints: a maximum number of stars 𝑁max ) and a 

maximum bounding area (𝑎𝑟𝑒𝑎𝑚𝑎𝑥). 

A. Visual Principle-Based Scoring 

Each candidate constellation subset is evaluated using a 

multi-objective score function based on five perceptual visual 

principles with score as follows: 

𝑠𝑐𝑜𝑟𝑒 = 𝑤1𝑀𝑎𝑣𝑔 + 𝑤2𝐷𝑎𝑣𝑔 + 𝑤3𝐶 + 𝑤4𝐸 + 𝑤5𝐺 

where 𝑀𝑎𝑣𝑔 is average (negated) magnitude of stars, 𝐷𝑎𝑣𝑔 is 

average (negated) pairwise angular distance, 𝐶 is convexity 

score, 𝐸 is even spacing score, 𝐺 is good continuation score, 

and 𝑤1 to 𝑤5 are weights set by the user for each visual factor. 

Below 𝑁 shows number of stars, 𝜃 value from Formula (5), 𝑑 

is angular distance from Formula (4), and 𝑀 is apparent 

magnitude. 

Parameter Formula 

Average magnitude 

(𝑀𝑎𝑣𝑔) 𝑀𝑎𝑣𝑔 =
1

𝑁
∑ 𝑀𝑖

𝑁

𝑖=1

  

Average angular 

distance (𝐷𝑎𝑣𝑔) 𝐷𝑎𝑣𝑔 =
1

𝑁
∑ 𝑑𝑖

𝑁

𝑖=1

 

Convexity value (𝐶) 
𝐶 =

1

𝑁
∑ 1 − |

𝜋 − 𝜃𝑖

𝜋
|

𝑁

𝑖=1

 

Even spacing value 

(𝐸) 𝑉𝑎𝑟(𝑑) =
1

𝑁
∑(𝑑𝑖 − 𝜇)2

𝑁

𝑖=1

 

𝐸 = 1 − min (1,
𝑉𝑎𝑟(𝑑)

𝑉𝑚𝑎𝑥  
) 

Good continuation 

value (𝐺) 𝐺 =
1

𝑁
∑ 1 − |

𝜃1 − 𝜃2

𝜋
|

𝑁

𝑖=1

 

Bounding Area (𝐴) 𝐴 = (max 𝑅𝐴𝑖 − min 𝑅𝐴𝑖) ∙ 

(max 𝐷𝑒𝑐𝑖 − min 𝐷𝑒𝑐𝑖) 

 

B. Branch and Bound Strategy   

The core search algorithm applies Branch and Bound to 

explore combinations of stars. Branching involves choosing 

whether to include or exclude the next star in the current subset. 

Bounding is used to estimate the upper bound of the score if we 

continue adding stars to the current partial solution. If this 

bound is lower than the best-known solution, the branch is 

pruned. 

The decision at each node in the B&B tree is based on 

formulation (1) where 𝑓(𝑖) is the the actual score of the current 

subset (based on visual principles) and 𝑔(𝑖) is the the heuristic 

estimate (upper bound) of the maximum additional score 

possible by adding more stars. 

The algorithm uses Best-First Search (BFS) Branch and 

Bound which uses a priority queue to always expand the node 

with the highest upper bound next. This improves convergence 

speed, especially in large star sets. 

The algorithm prunes paths that violate maximum number of 

stars 𝑁𝑚𝑎𝑥  and bounding area constraint 𝑎𝑟𝑒𝑎𝑚𝑎𝑥 , or if their 

potential upper bound is lower than the best score found so far. 

IV. PROGRAM EXPERIMENT 

This program experiment utilized the Hipparcos Star 

Catalog as the primary dataset, which contains high-precision 

data on stellar positions, magnitudes, and identifiers [11]. To 

validate and visualize specific stars and constellations, the 

Stellarium desktop application is used as a reference tool for 

real-world star positioning and appearance. The experiment 

was implemented in Python, leveraging libraries such as 

Matplotlib for plotting constellations, and built-in modules like 

math, heapq, and itertools for performing coordinate 

transformations, optimizing star selection, and simulating 

constellation connections. The process involved filtering and 

transforming the dataset based on visual magnitude and spatial 

position, mapping these to a 2D coordinate plane, and then 

using algorithmic logic to construct simplified visual 

representations of constellations for comparative analysis with 

Stellarium outputs. 

The github repository is attached in the attachment section. 

Below is the pseudocode of the program: 

function branch and bound(): 
 sort all_stars by magnitude (brightest first) 
 initialize max-heap with root node: 
   subset = [] 
   score = 0 
   area = 0 
   upper_bound = estimate upper bound from all_stars 
   push (-upper_bound, index=0, subset, score, area, 
        path=[]) to heap 
   while heap is not empty: 
      pop node with highest upper bound 
      if subset violates constraints (too many stars 
or area too large): 
            prune and continue 
        if score > best_value: 
            update best_value, 
best_constellation_subset, and best_path 
        if subset is full (reached max stars): 
            mark as leaf and continue 
        for each star from current index to end: 
            new_subset = subset + star 
            new_area = bounding box area of new_subset 
            if new_area exceeds limit: 
                skip star 
            new_score = calculate score of new_subset 
            remaining_stars = all_stars after current 
star 
            upper_bound = estimate upper bound from 
new_subset and remaining_stars 
            if upper_bound <= best_value: 
                prune and continue 
            push (-upper_bound, new_index, new_subset, 
new_score, new_area, updated_path) to heap 
    return best_constellation_subset, best_value, 
best_path 

In this part of the experiment, a specific subset of stars from 

the Hipparcos catalog was selected, identified by the following: 

https://www.kaggle.com/datasets/konivat/hipparcos-star-catalog
https://www.kaggle.com/datasets/konivat/hipparcos-star-catalog
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ID HIP VMag RAdeg DEdeg 

0 71974 5.7 220.81 -25.00 

1 72197 5.15 221.50 -25.44 

2 72323 5.61 221.84 -25.62 

3 72357 5.23 221.94 -26.09 

4 72378 5.23 221.99 -26.65 

5 72420 7.03 222.12 -25.49 

6 72488 5.68 222.33 -24.25 

7 72979 9.57 223.71 36.40 

8 73150 6.91 224.24 -26.28 

9 73189 6.94 224.38 -25.44 

 

These stars are chosen from the Stellarium application to 

ensure positional accuracy and visual consistency. The dataset 

was filtered to include only these stars, enabling focused 

analysis on their spatial distribution and relationships. The goal 

was to reconstruct the constellation formed by these stars and 

validate its structure against the Stellarium reference. Below is 

the view of the group of stars above 

Figure 3. The Group of Star View. 

These are the processes to identify the optimal subset of 

stars forming the most promising candidate constellation: 

1.  Initialization 

The weight for each parameter is set equally to 0.2 

with 𝑁𝑚𝑎𝑥 = 8 and 𝑎𝑟𝑒𝑎𝑚𝑎𝑥 = 50.0. The algorithm starts 

with an empty subset (Node 0), corresponding to no 

selected stars. The initial score is 0.00, with an area of 0.00 

and an upper bound (UB) estimate of -0.71. From this node, 

the algorithm expands by individually adding each of the 

10 stars as initial candidates, evaluating their partial scores 

and corresponding upper bounds. Each resulting node is 

enqueued for further exploration if its upper bound does 

not already fall below the current best solution. 

2. Node Expansion and Evaluation 

Nodes are expanded in order of best estimated upper 

bound (i.e., "best-first"). At each node, the algorithm: 

a. Evaluates the current subset's score (a metric reflecting 

geometric or photometric criteria), 

b. Computes the area covered by the subset,  

c. Estimates the upper bound (UB) of the best possible 

score attainable by any superset of the current subset. 

If the node's upper bound is worse than the best score 

found so far, the node is pruned. Otherwise, the algorithm 

generates new nodes by attempting to include additional 

stars, skipping any that would violate area constraints. 

3. Star Rejection and Pruning 

During traversal, many candidate nodes were pruned: 

a. Upper Bound Pruning: Nodes where the upper bound 

was worse than the best known score (Best = -0.60) 

were eliminated from consideration. This aggressive 

pruning significantly reduces the search space. 

b. Area Constraint Enforcement: Star 7 was consistently 

skipped due to exceeding the maximum allowed 

constellation area. This ensured spatial compactness in 

the candidate constellation. 

4. Constellation Improvement and Optimality 

A notable improvement occurred at Node 7 with the 

subset [1, 3, 2, 6]: 

a. Score improved from an initial best of -1.03 (Node 1) 

to -0.60. 

b. This subset achieved the best trade-off between 

magnitude distribution, spatial cohesion, and angular 

configuration (as encoded in the scoring function). 

Once this optimal subset was found, subsequent branches 

whose UB could not surpass -0.60 were pruned, solidifying the 

result’s optimality. Below is the final result of the constellation 

construction with total score -0.6 and total area 1.52. 

ID RA Dec Mag 

1 221.50 -25.44 5.15 

3 221.93 -26.08 5.23 

2 221.84 -25.62 5.61 

6 222.32 -24.25 5.68 

 

These are the step-by-step illustration for every time a star 

is chosen into solution set: 

Figure 4. Step 2 and 3 of the Construction. 
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Figure 5. Final result of the  

 

V. RESULT AND CONCLUSION 

The Best-First Branch and Bound (BFBnB) algorithm 

successfully identified an optimal subset of four stars forming 

a compact and well-distributed constellation with the best 

possible score under the given constraints. The selected stars 

IDs 1, 2, 3, and 6 achieved a final constellation score of -0.60, 

a significant improvement from earlier candidates, while 

maintaining a small spatial footprint of 1.52 units in area. This 

subset balanced magnitude visibility and angular arrangement, 

making it the most promising asterism from the initial pool of 

ten stars. 

The algorithm’s pruning strategy proved to be highly 

efficient, discarding numerous suboptimal branches based on 

upper-bound estimates and enforcing constraints such as 

maximum constellation area. Notably, Star 7 was consistently 

excluded due to violating the area constraint. This shows the 

effectiveness of integrating both geometric and heuristic criteria 

within a guided search, significantly narrowing the solution 

space without compromising optimality. 

Overall, the experiment validates this method as a powerful 

tool for constrained combinatorial selection in astronomical 

contexts. Its ability to guarantee optimality while maintaining 

computational feasibility highlights its applicability in fields 

such as satellite navigation, constellation design, and automated 

star chart generation. 

Future developments will focus on scaling the algorithm to 

handle larger star catalogs, potentially incorporating parallel 

processing to maintain tractability. Additionally, more 

sophisticated scoring functions could be introduced to capture 

photometric variability, color indices, or temporal stability for 

dynamic constellations. Integrating the method with real-time 

sky survey data and expanding it for multi-constellation 

optimization across different regions of the sky are also 

promising directions for applied astronomical research. 

VIDEO LINK AND ATTACHMENT 

Video: https://youtu.be/ry0ir_TsBes 

Github Link: github.com/najwakahanifatima/constellation-

optimizer-bnb 
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